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ABSTRACT

With the development of artificial intelligence, computer vision has been one of the

hottest field powered by deep learning. In this thesis, we propose a light-weight CNN ar-

chitecture design for faster and better object detector by combining ShuffleNet v2 [1](an

inference-efficient backbone) with Light-Head R-CNN [2] (a fast and light-weight de-

tection framework). We also propose a novel multitask learning framework, distributed

multitask learning, to train this detection architecture.

For the backbone network part, our team [1] concludes four heuristic principles

for fast inference on the target platforms by analyzing and benchmarking various key

operators. Guided by the heuristics, our team proposes an inference-efficient architec-

ture named ShuffleNet v2, which has significantly improved accuracy/speed trade-offs

over previous state-of-the-arts like MobileNet v2 and ShuffleNet v1 on both GPU and

ARM platforms, and we use it as our light-weight backbone network. For the detection

framework part, our team [2] investigates why typical two-stage methods are not as fast

as single-stage detectors like YOLO and SSD, and proposes a new two-stage detector,

Light-Head R-CNN, to address thea shortcoming in current two-stage approaches. We

follow its design to make the head of detector as light as possible by using a thin feature

map and a cheap R-CNN subnet (pooling and single fully-connected layer).

The ultimate ShuffleNet v2 [1] + Light-Head R-CNN [2] architecture, trained under

our distributed multitask learning framework, outperforms state-of-art object detectors

on COCO while keeping time efficiency. It achieves 32.8 mmAP at 109 FPS on COCO,
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significantly outperforming the single-stage, fast detectors like YOLO and SSD on both

speed and accuracy.

Keywords: Light-weight CNN, Object Detection, Multitask Learning.
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Chapter 1 Introduction

Over the past years deep learning methods have been shown to outperform previous

state-of-the-art machine learning techniques in several fields, with computer vision be-

ing one of the most prominent cases. The year of 2012 witnessed the birth of deep

learning era, when Alex Krizhevsky used AlexNet [7] to win that years ImageNet com-

petition, dropping the classification error record from 26% to 15%, an astounding im-

provement at that time. Since then, the landscape of computer vision community has

completely changed. Convolutional neural networks (CNNs) started to dominate the

field of computer vision, achieving top scores on many tasks and their related competi-

tions.

A noteworthy trait in the deep learning era is that there has been an exponential

growth in the number of CNN based solutions to computer vision tasks in the past

years, and this trend seems to be continuing. The evolution of object detection is a good

example. It is a heavily researched topic in computer vision. The main aim of object

detection task is to detect the object or a set of objects from a predefined set of classes,

as well as the minimal sufficient bounding box around each object instance. Traditional

detectors extract image features by using hand-engineered object component descrip-

tors, such as HOG [8], SIFT [9], Selective Search [10], Edge Box [11]. During a long

time, DPM [12] and its variants are the dominant methods among traditional object

detectors. With the rapid progress of deep convolutional neural networks, CNN based

object detectors have yielded a remarkable result and become a new trend in detection

literature.

Benefited from the rapid development of deep convolutional networks [1,3,6,7,13–

20], a great progress has been made for the object detection problem. Currently, the

leading region-based object detection paradigm [2, 4, 5, 21–24] consists of two parts,

namely, backbone network for image feature generation, and detection head for region

proposal generation, region recognition and duplicate removal. We briefly introduce

these two parts in the following section.
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Chapter 2 Related Works

2.1 Backbone Network

2.1.1 Accuracy Perspective

The backbone networks for object detection are usually borrowed from the ImageNet

[25]classification. In last few years, ImageNet has been regarded as a most authoritative

datasets to evaluate the capability of deep CNNs. Many novel networks are designed to

get higher performance for ImageNet.

AlexNet [7] is among the first to try to increase the depth of CNN. In order to

reduce the network computation and increase the valid receptive field, AlexNet down-

samples the feature map with 32 strides which is a standard setting for the following

works. VGGNet [13] stacks 3x3 convolution operations to build a deeper network, and

it still involves 32 strides in feature maps. Most of the following researches adopt

VGG-like structure, and design a better component in each stage (split by stride).

GoogleNet [14, 26] proposes a novel inception block to involve more diversity fea-

tures. ResNet [15] adopts bottleneck design with residual sum operation in each stage,

which has been proved a simple and efficient way to build a deeper neural network.

ResNeXt [17] and Xception [27] use group convolution layer to replace the tradi-

tional convolution. It reduces the parameters and increases the accuracy simultaneously.

DenseNet [28] densely concatenate several layers, and further reduces parameters while

keeping competitive accuracy. SENet [18] introduces an architectural unit that boosts

performance at slight computation cost. Another different research is Dilated Residual

Network [29]which extracts features with less strides. DRN achieves notable results on

segmentation, while has little discussion on object detection.
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2.1.2 Speed Perspective

As building deeper and larger CNNs is a primary trend for solving major vision tasks,

the most accurate CNNs usually have hundreds of layers and thousands of channels

[15, 17, 26], thus requiring computation at billions of FLOPs. However, the increasing

needs of running high quality deep neural networks on embedded devices encourage

the study on efficient model designs.

Tuning deep neural architectures to strike an optimal balance between accuracy and

performance has been an area of active research for the last several years. Both manual

architecture search and improvements in training algorithms, carried out by numerous

teams have resulted in dramatic improvements over early designs. Recently there has

been lots of progress in algorithmic architecture exploration included hyperparameter

optimization [30] as well as various methods of network pruning [31] and connectiv-

ity learning. MobileNet [20] and MobileNet v2 [6] utilizes the depthwise separable

convolutions and gains adorable results among light-weight models. ShuffleNet [1, 3]

introduces the channel shuffle operation to change the connectivity structure of the inter-

nal convolutional blocks, and generalized groups convolution and depthwise separable

convolution in a novel form. NASNet [32], proposed by reinforcement learning and

model search to explore efficient model designs, achieves comparable performance.

2.2 Detection Head

2.2.1 Accuracy Perspective

The first framework to utilize deep neural network features into detection system is

R-CNN [21], which uses hand-engineered methods to generate region proposals, such

as Selective Search [10], Edge Boxes [11] and MCG [33]. Then Fast R-CNN [22]

is proposed to jointly train object classification and bounding box regression, which

improves the performance by multi-task training. Following Fast R-CNN, Faster R-

CNN [4] introduces Region Proposal Network (RPN) to generate proposals by using

network features. Benefited from richer proposals, it marginally increases the accuracy
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of object detection and becomes a milestone of R-CNN serials detectors.

Most of the following works strengthen Faster R-CNN by bringing more compu-

tation into network. Deformable Convolutional Networks [24] are proposed to model

geometric transformations by learning additional offsets without supervision. Feature

Pyramid Networks (FPN) [34] exploits inherent multi-scale and pyramidal hierarchy

of deep convolutional networks to construct feature pyramids. Based on FPN, Mask

R-CNN [23] further extends a mask predictor by adding a extra branch in parallel with

the bounding box recognition. RetinaNet [35] is another FPN based single stage de-

tector, which involves Focal-Loss to address class imbalance issue caused by extreme

foreground-background ratio.

2.2.2 Speed Perspective

The hot research topic in object detection from speed perspective is proposal free detec-

tor. YOLO and YOLO v2 [36, 37] simplifies object detection as a regression problem,

which directly predicts the bounding boxes and associated class probabilities without

proposal generation. SSD [38] further improves the performance by producing pre-

dictions of different scales from different layers. Unlike box-center based detectors,

DeNet [39] first predicts all boxes corners, and then quickly searching the corner distri-

bution for non-trivial bounding boxes.

Object detection literatures have been also striving to improve the speed of two-

stage detectors. Back to original R-CNN, which forwards each proposal separately

through the whole network, SPPNet [40] is the first detector to share the computa-

tions among candidate boxes. Both Fast/Faster R-CNN [4, 22] accelerates the network

by uniforming the detection pipeline. R-FCN [5] shares computations between RoI

subnetworks, which speeds up inference as a large number of proposals are utilized.

Currently, Light-Head R-CNN [2] is state-of-the-art two stage object detector in terms

of speed, which achieves 31.5 mmAP at 95 FPS on COCO by using a thin feature map

and a cheap R-CNN subnet.
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2.3 Multitask Learning

As an approach to inductive transfer that improves generalization by using the domain

information contained in the training signals of related tasks as an inductive bias, multi-

task learning has been used successfully across all applications of machine learning,

from natural language processing [41] and speech recognition [42] to computer vi-

sion [22] and drug discovery [43]. Multitask learning comes in many guises: joint

learning, learning to learn, and learning with auxiliary tasks are only some names that

have been used to refer to it.

In the context of deep learning, multitask learning is typically done with either hard

or soft parameter sharing of hidden layers. Hard parameter sharing is the most com-

monly used approach to MTL in neural networks and goes back to [44]. It is generally

applied by sharing the hidden layers between all tasks, while keeping several task-

specific output layers. Hard parameter sharing greatly reduces the risk of overfitting. In

fact, [45] shows that the risk of overfitting the shared parameters is an order N – where

N is the number of tasks – smaller than overfitting the task-specific parameters, i.e. the

output layers. In soft parameter sharing on the other hand, each task has its own model

with its own parameters. The distance between the parameters of the model is then

regularized in order to encourage the parameters to be similar. [46] for instance use the

l2 norm for regularization, while [47] use the trace norm.

While most of recent deep learning approaches have used hard and soft parameter

sharing – either explicitly or implicitly – as part of their model, a few papers have looked

at developing better mechanisms for multitask learning in deep neural networks. In

multitask learning for computer vision, approaches often share the convolutional layers,

while learning task-specific fully-connected layers. [48] improve upon these models by

proposing Deep Relationship Networks. In addition to the structure of shared and task-

specific layers, they place matrix priors on the fully connected layers, which allow the

model to learn the relationship between tasks, similar to some of traditional Bayesian

models. This approach, however, still relies on a pre-defined structure for sharing,

which may be adequate for well-studied computer vision problems, but prove error-
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prone for novel tasks. Starting at the other extreme, [49] propose a bottom-up approach

that starts with a thin network and dynamically widens it greedily during training using

a criterion that promotes grouping of similar tasks. However, the greedy method might

not be able to discover a model that is globally optimal, while assigning each branch to

exactly one task does not allow the model to learn more complex interactions between

tasks. [50] start out with two separate model architectures just as in soft parameter

sharing. They then use what they refer to as cross-stitch units to allow the model to

determine in what way the task-specific networks leverage the knowledge of the other

task by learning a linear combination of the output of the previous layers.

In conclusion, current approaches for multitask learning are all applied on single

machine by designing a uniform architecture while adding more branches and units. It

is quite inflexible in terms of task amount and computation capacity. Thus, we try to

maximize the efficiency and capacity of multitask learning by proposing a distributed

architecture with a parameter center – distributed multitask learning.
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Chapter 3 Approach

Our light-weight CNN architecture design for faster and better object detector includes

light-weight backbone network and light-weight detection head.

First, we choose ShuffleNet v2 [1] proposed by our team as our light-weight back-

bone network due to its novel performance on both accuracy and speed in ImageNet

classification. By analyzing the key components of two state-of-the-art light-weight

CNN models – ShuffleNet [3] and MobileNet v2 [6], [1] perform a series of controlled

evaluations to benchmark the related operations, from which our team concludes three

heuristic principles for fast inference in our platforms. Next, guided by the heuris-

tics, [1] propose a new inference-efficient architecture – ShuffleNet v2, which is demon-

strated much faster than the previous counterparts on both GPU and ARM platforms and

achieves superior accuracy over the previous state-of-the-arts, for example, on the task

of ImageNet classification it outperforms ShuffleNet v1 by 2% and MobileNet v2 1.5%

at the complexity of 140MFLOPs.

For light-weight detection head, as Faster R-CNN [4] and R-FCN [5] are slow due

to their heavy heads, we follow the design of detection framework in Light-Head R-

CNN [2] to build an efficient yet accurate two-stage detector. Specifically, we apply

a large-kernel separable convolution to produce thin feature maps with small channel

number. This design greatly reduces the computation of following RoI-wise subnet-

work and makes the detection system memory-friendly. A cheap single fully-connected

layer is attached to the pooling layer, which well exploits the feature representation for

classification and regression.

Last, we propose a novel multitask training framework, distributed multitask train-

ing, to perform training on this light-weight CNN architecture. We establish a dis-

tributed training framework, including PS (parameter center) and TS (task site), in

which a PS holds and updates the parameters in a neural network, while TSes commit

changes and download task-specific parameters. We demonstrate that our distributed

multitask learning method can enhance the performance of our light-weight detector by
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0.3∼1 mmAP on COCO detection under different multitask settings.

3.1 Backbone Network: ShuffleNet v2

3.1.1 Heuristic Priciples for Fast Inference

The backbone networks for object detection are usually pretrained on ImageNet [25]clas-

sification, because better classification result on large image database usually indicates

better capability of feature extraction. Earlier works such as [7, 13–15, 17] usually fo-

cus on absolute accuracy. However, with the development of mobile devices such as

smartphones, people start to focus on accuracy-efficiency, i.e. seeking for more accu-

rate models under given theoretical complexity budget, and light-weight convolutional

neural network gradually becomes one of the central topics in modern practical visual

processing systems.

One of the estimation metrics of CNN model complexity is the number of float-

point operations, or FLOPs1. It is undoubtedly one of the crucial factors to the actual

inference time of neural networks, which has been widely used as an evaluating metric

in architecture tuning [3,6,15,17,18,20,27,28,51–56] and neural network simplication

[31, 57–67]. The more FLOPs a model contains, the more complex it tends to be.

However, a lot of previous works such as MobileNet v2 [6] and NASNet [32] imply

that different models with comparable theoretical complexity may have very different

inference speeds in reality. For example, in [62, 65] the authors point that structured

pruning schemes usually result in more actual speedup than unstructured ones, and

MobileNet v2 [6] is much faster than NASNet-A [32] even though these two models

are under comparable FLOPs. Here an important question is raised: given a FLOPs

budget, which neural network architecture may lead to faster inference speed?

[1] give a seemingly perfect answer to the above question. As actual running time

is related to a lot of factors such as device infrastructure, memory/cache hierarchy,

computational model and implementation optimization (blocking, SIMD, data layout,

etc), it is nearly impossible to conclude a simple rule for inference efciency.

1In the paper, FLOPs follows the same definition as [3], i.e. the number of multiply-adds.
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With the rapid development of computational devices, it is harder and harder to de-

sign an actual efficient structure without taking target device properties into account.

For example, some earlier model acceleration methods [58–60] report considerable ac-

tual speedup via tensor decomposition; however, recent work [31] reproduces the for-

mer [59] and points out such factorization is even slower on GPU although the model

has 75% fewer FLOPs. Our team inspects the phenomenon and finds out the cause -

latest NVIDIA GPUs and the corresponding CUDNN [68] library have optimized only

for large 3×3 convolutions instead of the factorized ones. Thus, our team chooses to

empirically investigate heuristic design principles for efficient network architectures on

modern platforms, with GPU and ARM as the target computing devices:

Deep learning platform. MegBrain, the product-level closed-source framework of

Megvii. Compared with most of the open-source solutions, this framework is more

efficient and considered to be more suitable for practical situations. Full optimization

options (e.g. tensor fusion, which is used to reduce the overhead of small operations)

are switched on.

Newtork models. ShuffleNet v1 [3] and MobileNet v2 [6]. The size of input image

is 224×224.

GPU device. A single NVIDIA GeForce GTX 1080Ti. The convolution library is

CUDNN 7.0 [68]. The benchmarking function of CUDNN to select the fastest algo-

rithms for dierent convolutions respectively is also activated.

ARM device. Qualcomm Snapdragon 810 (a highly-optimized Neon-based imple-

mentation). All results are evaluated with single thread and averaged on 100 times

experiments.

Table 3.1 shows the result of the empirical study. It is easy to see that convolution is

the most time-consuming operation in the neural networks. Surprisingly, element-wise

operations (such as AddTensor, ReLU, etc) also occupy a considerable fraction of infer-

ence time in both structures and platforms, even though their theoretical complexities

9
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Setting Conv Data Element-wise Shuffle Other
ShuffleNet v1 on GPU 50% 20% 15% 5% 10%
ShuffleNet v1 on ARM 87% 1% 4% 0% 8%
MobileNet v2 on GPU 54% 22% 23% - 1%
MobileNet v2 on ARM 89% 0.3% 10.5% - 0.2%

Table 3.1 Inference time occupations for different operators in ShuffeNet v1 (1×,
g = 3) [3] and MobileNet v2 (1×) [6].

are negligible. The cost of other operators is relatively small.

Analysis and discussion. According to the above empirical studies, our team con-

cludes three heuristic principles for inference-efficient CNN model design as follows:

• P1: Convolution in an inference-efficient CNN model should keep the number of

output channels the same as input channels.

As modern light-weight networks usually adopt depthwise separable convolu-

tion [3, 6, 20, 27] whose pointwise part occupies most of the complexity, here we

mainly consider pointwise convolution (i.e. 1 × 1 convolution). Two parameters

control the shape of pointwise convolution kernels: the number of input channels

c1 and output channels c2. Intuitively, given the total FLOPs budget C = hwc1c2

where h andw define the spatial size of the feature map, it is beneficial to produce

efficient inference if c1 = c2. Suppose a simple case when the entire input/out-

put feature maps and kernel weights could be fully cached, then the number of

memory-access operations (MACs) during the inference is:

MACs = hw(c1 + c2) + c1c2 ≥ 2
√
hwC +

C

hw
. (3-1)

It is easy to see that MACs are minimized if and only if c1 = c2, while smaller

MACs usually implies more efficient execution. In practical situations, the cache

is usually not large enough to hold the entire feature maps, and complex cache

blocking strategies are adopted in the runtime library to reduce memory-access

requirements [69], which may cause different effects from the above theoretical

10
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analysis. However, experiments in [1] indicate that it would result in significantly

faster inference if the values of c1 and c2 are close than they are much different.

• P2: Dense convolutions are better than group convolutions to build an inference-

efficient model.

In the field of light-weight CNN design, group convolutions are commonly used

[3, 17, 53, 55] to reduce the complexity of traditional dense convolutions. How-

ever, after some studies on the implementation, our team finds several drawbacks

of group convolutions which may lead to inefficient inferencing: first, given the

constraint total FLOPs, larger number of groups results in more feature map chan-

nels and increasing the overhead brought by the additional MACs; second, to our

knowledge, group convolutions are less flexible to cache/shared memory block-

ing, which makes it not easy to optimize.

To study how group convolutions affect the actual efficiency, [1] stack 10 point-

wise group convolutional layers as the benchmark model. Our team tests a variety

of group numbers/input resolutions/FLOPs on both GPU and ARM and repeat-

edly stacks the structure unit for 10 times to benchmark the speed. The results

prove our guess – convolutions with large group numbers are still much slower

under the same FLOPs, for example, group = 8 cost around 150% more time on

GPU and up to 30% more on ARM than the counterpart dense convolutions.

• P3: The number of fragments in an inference-efficient model should be as small

as possible.

Recent years have witnessed the development of some of the state-of-the-art CNN

models (e.g Inception series [14,16,26,70] and auto-generated architectures [32,

71, 72]) adopt “multi-path” architecture, which involves a lot of small operators

(called “fragmented operators” here) in each building block instead of a few large

ones. For example, in NASNet-A [32] the number of fragments (i.e. the number

of individual convolutions or pooling operations in one building block) is 13,

in contrast, in other structures like ResNet [15] the number is 2 or 3. Though

such multi-path design may bring some benefits on accuracy, we intuitively think
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that too many fragments make it inefficient for inference – the side effects are

just similar to the case of group convolutions. Furthermore, on GPU device,

fragments also harm paralleling and introduce extra overheads such as kernel

launching and synchronization. Empirical study in [1] proves our guess.

Let’s go over recent advances in light-weight neural network architectures [3, 6,

20, 27, 32, 71, 72], most of which are designed following the accuracy-efficient cues

(i.e. seeking for the most accurate model at given constraint FLOPs); however from

inference-efficiency perspective, those models could be suboptimal as their structures

conflict with some principles. For example, ShuffleNet v1 [3] violates P2 (group convo-

lutions) and P1 (bottleneck-like building block); MobileNet v2 [6] violates P1 (inverted

bottleneck); some auto-generated structures such as NASNet [32] mainly violate P3

(too many fragments and random connections). In the next subsection, we introduce

our backbone choice, ShuffleNet v2 [1], an inference-efficient CNN architecture de-

signed under the guidance of these heuristics.

3.1.2 ShuffleNet v2: an Inference-efficient Architecture

The building block of ShuffleNet v2 is inspired by the previous state-of-the-art work

ShuffleNet v1 [3]. First of all, let’s have a brief review on it. [3] believe that one of the

challenges to light-weight models is the very limited feature map channels under con-

straint computation complexity. To address the issue, two techniques are adopted in [3]

– pointwise group convolutions and bottleneck-like structures, which allows to generate

more channels without significantly increasing the FLOPs. Then the shuffle operation

is introduced to enable the cross talk between different feature groups. Fig 3.1(a) illus-

trates the building blocks of ShuffleNet v1.

According to what is discussed in Sec. 3.1.1, both techniques (pointwise group con-

volutions and bottlenecks) violate the fast-inference principles. How to efficiently gen-

erate “thick” feature maps without passing them through convolution layer? A straight-

forward idea is to introduce channel concatenation operation. However, a new problem

raises: since channel concatenation needs at least two-way inputs, according to P1, all
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Figure 3.1 Building blocks. (a) ShuffleNet v1 [3]; (b) ShuffleNet v2 [1]. DWConv
– depthwise convolution. GConv – group convolution.

convolutions must keep the number of input channels; thus the number of channels af-

ter concatenation will be at least twice the number of input channels. In other words,

feature map thickness grows exponentially with the increasing of depth, which is unac-

ceptable.

In order to get out of the dilemma, our team introduces a new operator – channel

split – as an inverse to channel concatenation. For each building block, suppose the

input feature map has c channels, after channel split, there are two branches with c′

and c − c′ channels respectively. Following P3, we leave one branch identity and put

several convolutions only in another branch. All convolutions keep the same number

of input and output channels to satisfy P1. Then a channel concatenation operator is

introduced to generate the output feature map, whose number of channels right equals

to the number of input channels. As a result, we get “thicker” feature maps (compared

with convolution outputs) without breaking any of the principles nor changing the shape

of input feature map.

We propose a new building block, say ShuffleNet v2, as illustrated in Fig 3.1(b, left).

Apart from the points introduced above, there are several other differences from Shuf-
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fleNet v1 (Fig 3.1(a, left)): first, following P2, our team cancels group convolutions, so

channel shuffle operation is not needed in the right branch; instead, our team moves it

after the concatenation to mix up information from the two branches. Second, residual

shortcut is also removed; most of other element-wise operations like ReLU and depth-

wise convolutions exist only in one branch to merge as many element-wise operations

as possible. For the building block with stride = 2, our team simply removes the

channel split operator – thus the output channels double by nature – and adds a pair of

depthwise separable convolutions to perform downsampling (see Fig 3.1(b, right)).

Our team repeatedly stacks ShuffleNet v2 building blocks to construct the whole

network, basically following the top-level architecture of [3] except for one difference:

here we insert an additional 1×1 convolution layer right before global averaged pooling

to mix up features, which is not needed in ShuffleNet v1. Similar to [3], the number

of channels are scaled in each blocks to generate networks of different complexities,

marked as 0.5×, 1×, etc. Details are presented in Table 3.2. It is worth a note that in

ShuffleNet v2, successive 3 channel operators – channel concatenation, channel shuffle

and channel split – could be fused as a complex operation, which is beneficial to fast

inferencing. In the experiment, c′ is set to 0.5× c for simplicity.

Layer Output size KSize Stride Repeat
Output channels

0.5× 1× 1.5× 2×
Image 224×224 3 3 3 3
Conv1
MaxPool

112×112
56×56

3×3
3×3

2
2 1 24 24 24 24

Stage2
28×28
28×28

2
1

1
3 48 116 176 244

Stage3
14×14
14×14

2
1

1
7 96 232 352 488

Stage4
7×7
7×7

2
1

1
3 192 464 704 976

Conv5 7×7 1×1 1 1 1024 1024 1024 2048
GlobalPool 1×1 7×7
FC 1000 1000 1000 1000
FLOPs 41M 146M 299M 591M
# Weights 1.4M 2.3M 3.5M 7.4M

Table 3.2 ShuffleNet v2 [1] architectures at different complexities.
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3.2 Detection Head: Light-Head R-CNN

3.2.1 Heavy Head in Current Two-stage Detectors

As we discussed in the start of this chapter, conventional two-stage object detectors like

Faster R-CNN [22] and R-FCN [5] usually involve a heavy head, which has negative

effects on the computational speed. “Head” in this thesis refers to the structure attached

to our backbone base network.

More specifically, Faster R-CNN employs two large fully connected layers or all the

convolution layers in ResNet 5-th stage [4,73] for per RoI’s recognition and regression.

It is time-consuming in terms of per-region prediction and even gets worse when a large

number of proposals are utilized. In addition, the number of feature channels after ROI

pooling is large, which makes the first fully connected layer consume a large memory

and potentially influence the computational speed.

Different from Fast/Faster R-CNN which apply a per-region subnetwork many times,

Region-based fully convolutional networks (R-FCN) [5] tries to share computation

across all RoIs. However, R-FCN needs to produce a very large additional score maps

with #classes× p× p (p is the followed pooling size) channels, which is also memory

and time consuming. The heavy head design of Faster R-CNN or R-FCN makes the

two-stage approach less competitive than single-stage detector.

Having these issues in mind, we decide to follow the design of Light-Head R-CNN

[2] to utilize light-head design in our light-weight model. The improvments are based

on two components: R-CNN subnet and RoI warping.

3.2.2 Light-Head Design for Light-weight Detector

R-CNN subnet

As it shows in Figure 3.2 (A), Faster R-CNN adopts a powerful R-CNN and this subnet

utilizes two large fully connected layers or whole ResNet stage 5 [4, 73] as a second

stage classifier, which is beneficial to the detection performance. Therefore Faster R-

CNN and its extensions perform leading accuracy in the most challenging benchmarks
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Figure 3.2 Overview of Faster R-CNN [4] and R-FCN [5].

like COCO. However, the computation could be intensive especially when the number

of object proposals is large.

To speed up RoI-wise subnet, R-FCN first produces a set of score maps for each

region, whose channel number will be #classes × p × p (p is the followed pooling

size), and then pool along each RoI and average vote the final prediction, as it shows

in Figure 3.2 (B). Using a computation-free R-CNN subnet, R-FCN gets comparable

results by involving more computation on RoI shared score maps generation.

As mentioned above, both Faster R-CNN and R-FCN have heavy heads and the

heavy heads are at different positions. From accuracy perspective, although Faster R-

CNN is good at RoI classification, it usually involves global average pooling in order to

reduce the computation of first fully connected layer, which is harmful for spatial local-

ization. For R-FCN, it directly pools the prediction results after the position-sensitive

pooling and the performance is usually not as strong as Faster R-CNN without RoI-wise

computation layers.

From speed perspective, Faster R-CNN passes every RoI independently through

a computation-costly R-CNN subnet, which slows down the network speed especially
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Figure 3.3 Overview of Light-Head R-CNN [2]. It builds “thin” feature maps
before RoI warping, by large separable convolution and adopts a single fully-
connected layer with 2048 channels in our R-CNN subnet.

when the number of proposals is large. R-FCN uses cost-free R-CNN subnet as a second

stage detector. But as R-FCN needs to produce a very large score map for RoI pooling,

the whole network is still time consuming.

Having these issues in mind, in the new Light-Head R-CNN [2], our team proposes

to utilize a simple, cheap fully-connected layer for our R-CNN subnet, which makes a

good trade-off between the performance and computational speed. Figure 3.3 provides

the overview of Light-Head R-CNN. As the computation and memory cost for the fully-

connected layer also depends on the number channel maps after RoI operation, we next

introduce how our team designs the ROI warping.

Thin feature maps for RoI warping

Before feeding proposals into R-CNN subnet, RoI warping is involved to make the

shape of feature maps fixed.

In the Light-Head R-CNN, our team proposes to generate the feature maps with

small channel number (thin feature maps), followed by conventional RoI warping. In

our experiments, we find that RoI warping on thin feature maps will not only improves

the accuracy but also saves memory and computation during training and inference.

Considering PSRoI pooling on thin feature maps, we can bring more computation to

strengthen R-CNN and decrease the channels. In addition, if we apply RoI pooling

on our thin feature maps, we can reduce R-CNN overhead and abandon Global Aver-

age Pooling to improve performance simultaneously. Moreover, without losing time
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efficiency, large convolution can be involved for thin feature map production.

3.2.3 Architecture Details

Following the above discussions, we present our implementation details for general

object detection. The pipeline of our approach is in Figure 3.3.

Basic feature extractor. We utilize ShuffleNet v2 [1] proposed by our team as the

backbone network due to its fast inference speed and great performance on ImageNet

classification. For comparison, we also follow the setting in [2] and test the performance

of this light-weight detector on Inception [70].

Thin feature maps. Following the setting in [2], we apply large separable convolution

layers [26, 74] on C5, the structure is shown in Figure 3.4. In our approach, we let

k = 15, Cmid = 256 for setting L, and k = 15 , Cmid = 64 for setting S. We also reduce

theCout to 10×p×pwhich is extremely small compared with the value #classes×p×p

used in R-FCN. Due to benefits from the larger valid receptive field caused by large

kernel, the feature maps we pooled on contain more information and are more powerful.

Region Proposal Network. RPN is a sliding-window class-agnostic object detector

that uses features from C4. RPN pre-defines a set of anchors, which are controlled

by several specific scales and aspect ratios. In our models, we set three aspect ratios

{1:2, 1:1, 2:1} and five scales {322, 642, 1282, 2562, 5122} to cover objects of differ-

ent shapes. Since there are many proposals heavily overlapping with each other, non-

maximum suppression (NMS) is used to reduce the number of proposals before feeding

them into RoI prediction subnetwork. We set the IoU ( intersection-over-union) thresh-

old of 0.7 for NMS. Then we assign anchors training labels based on their IoU ratios

with ground-truth bounding boxes. If the anchor has IoU over 0.7 with any ground-truth

box, it will be set a positive label. Anchors which have highest IoU for ground-truth

box will also be assigned a positive label. Meanwhile, if extra anchors have IoU less

than 0.3 with all ground-truth box, their labels will be negative. More details can be
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Figure 3.4 Large separable convolution performs a k × 1 and 1 × k convolu-
tion sequentially. The computational complexity can be further controlled through
Cmid, Cout.

referred to [4].

R-CNN subnet. According to [2], we only employ a single fully-connected layer

with 2048 channels (without dropout) in R-CNN subnet, followed by two sibling fully

connected layer to perform RoI classification and regression. Only 4 channels are ap-

plied for each bounding box location because we share the regression between different

classes. Benefited from the powerful feature maps for RoI warping, a simple Light-

Head R-CNN can also achieve remarkable results, while maintaining the efficiency.
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3.3 Training Framework: Distributed Multitask Learning

Besides combining ShuffleNet v2 [1] and Light-Head R-CNN [2] to produce our light-

weight object detector, we also propose a novel training framework in this thesis –

distributed multitask learning.

Figure 3.5 The framework of distributed multitask learning. Remote momentum
optimizers in different task sites commit weight change to the server and fetch
parameters back in next iteration.

Conventional multitask learning usually relies on sharing some low-level layers

among all tasks, while assigning several task-specific output layers to different tasks

and combining their loss functions for joint training, which can greatly reduce the risk

of overfitting.

However, this old form of multitask learning can’t find ways to resist the following

drawbacks:
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• There can only be one data input source, namely, all tasks share the same input

data. But chances are that some data have labels for only a proportion of the tasks,

which means these data can’t be utilized for joint training.

• The whole network tends to get very large if more tasks join the training, which

may result in low training speed under limited resource budget.

• The learning rate must be the same for all parameters in the whole network, while

the suitable learning rate may varies from task to task.

• Due to the unification of different tasks into a single one, the training must be

done on one machine.

Having these issues in mind, we propose a much more flexible and efficient training

method – distributed multitask learning (Figure 3.5).

The training framework can be seen as a distributing generalization of Momentum

Optimizer on single machine, because it is commonly used in vision tasks. But the

whole framework can be adapted easily to other optimzing rules. Momentum [75] is

a method that helps accelerate SGD in the relevant direction and dampens oscillations

by adding a fraction β as the update vector of the past time step to the current update

vector:

vt = βvt−1 + α∇WL(W,X, y)

Wt = Wt−1 − vt
(3-2)

Our distributed multitask learning framwork consists of a parameter server (PS) and

several task site(TS). The training procedure goes as follows:

1. PS starts and waits for the connection of TS.

2. Training in TS starts and Remote Optimizer in TS connects to PS through the IP

address of PS. TS makes registration and submits the parameter names and their

initialization values.
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3. After the number of registered tasks reaches some level, PS starts to send training

start signals to all of the registered task sites.

4. Distributed learning starts in each site and after one iteration of backpropagation,

Remote Optimizer commits the value of αi∇WL(W,Xi, yi) to PS.

5. PS updates the parameter value by the formula:

vt = βvt−1 +
∑
i

αi∇WL(W,Xi, yi)

Wt = Wt−1 − vt
(3-3)

6. Remote Optimizer pulls the parameter to local TS and starts next loop.

As we can see, our proposed multitask learning framework solves the drawbacks of

conventional multitask learning perfectly:

• This framework can allow different tasks use different data sources. As it is not

“one” task that unifies all, but truly “multiple” task learning as it focuses on the

parameter name rather than network graph.

• With more tasks joining, the size of networks used for previous tasks stay the

same, which has little impact on the training speed.

• Learning rate can vary from tasks to tasks, which adds flexibility to the whole

training process.

• Training needs to be done on different machines to accelerate the efficiency.

Here we propose two promising usage of this framework to enhance the perfor-

mance of current models on computer vision tasks.

Joint training of image classification and object detection. The backbone network

of detetction is usually borrowed from the pretrained models on ImageNet [76] then

finetuned on the detection dataset such as COCO [77]. A notable phenomenon is that
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the classification performance of backbone model decreases with the training on object

detection. “Networks are easy to forget!” Chances are that the training converges to a

plain local optimum in single detection training. With the assistance of image classifi-

cation training, the training process may find a better convergence point.

Multiscale training of object detection. Image input scale is one of key factors in

object detection. We can utilize this framework to perform multiscale training, to make

the detection framework see more images at different scales.
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Chapter 4 Experiment

4.1 Performance Study: ShuffleNet v2 + Light-Head R-CNN

After combining ShuffleNet v2 [1] and Light-Head R-CNN [2], in this section, we

evaluate our light-weight detector on COCO [77, 78] dataset, which has 80 object cat-

egories. There are 80k train set and 40k validation set, which will be further split into

35k val-minusmini and 5k mini-validation set. Following the common setting, we com-

bine the train set and the val-minusmini to obtain the 115K images for training use the

5K mini-validation images for validation.

We use AP (averaged precision over intersection-over-union thresholds), the stan-

dard COCO metrics to evaluate our approach. To make comparison with ShuffleNet

v2 and fully validate the efficiency of Light-Head R-CNN, following [2] we produce

an efficient bottleneck Xception like network with 34.1 top 1 error (at 224 × 224 in

ImageNet) to evaluate our methods. The backbone network architecture is shown in

Table 4.1. Following Xception design strategies, we replace all convolution layer in

bottleneck structure with channel-wise convolution. However we do not use the pre-

activation design which is proposed in identity mappings [52] because of shallow net-

work.

More specifically, we have the following changes for the fast inference speed:

1. We abandon àtrous algorithm in our fast models, because it involves much com-

putation compared with small backbone.

2. We set RPN convolution to 256 channels, which is half of original used in Faster

R-CNN and R-FCN.

3. We apply large separable convolution with kernel size = 15, Cmid = 64, Cout =

490 (10 × 7 × 7). Since the middle channels we used is extremely small, large

kernel is still efficient for inference.
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Layer Output size KSize Stride Repeat Output channels
Image 224× 224
Conv1 112× 112 3× 3 2 1 24
MaxPool 56× 56 3× 3 2
Stage2 28× 28 2 1 128

28× 28 1 3 128
Stage3 14× 14 2 1 256

14× 14 1 7 256
Stage4 7× 7 2 1 512

7× 7 1 3 512
GlobalPool 1× 1 7× 7
FC 1000
Complexity 145M

Table 4.1 An efficient Xception like architecture for comparison experiment. The
complexity is evaluated with FLOPs.

4. We adopt PSPooling with alignment technique as our RoI warping, since it re-

duces the pooled feature map channels by k× k times (k is the pooling size). We

also find that the detector will obtain better results if we involve RoI-align.

For training we use train+val set in COCO except for 5000 images from minival

set, while using the minival set to benchmark. The benchmark metric is COCO standard

mmAP, i.e. the averaged mAPs at the box IoU thresholds from 0.5 to 0.95. We compare

our light-weight model with recent fast detectors like YOLO, SSD, and DeNet. We also

compare our ShuffleNet v2 with other three light-weight models: Xception, ShuffleNet

v1 and MobileNet v2.

Results are evaluated on COCO test-dev datasets, only one batch of four images

is adopted and we absorb the Batch-normalization [16] for fast inference. We also

benchmark the inference time on GPU. For fair comparison the batch size is set to 4 to

ensure almost full GPU utilization rate. As shown in Table 4.2, our method (ShuffleNet

v2 + Light-Head R-CNN) gets 31.8 mmAP at 109 FPS on MS COCO, significantly

outperforming the current fast detectors like YOLO and SSD.
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Model backbone test size speed(fps) mmAP
YOLO V2 Darknet 448/448 40 21.6
SSD VGG 300/300 58 25.1
SSD ResNet 101 300/300 16 28.0
SSD ResNet 101 500/500 8 31.2
DSSD [79] Resnet101 300/300 8 28.0
DSSD ResNet 101 500/500 6 33.2
R-FCN ResNet 101 600/1000 11 29.9
DeNet ResNet 34 512/512 83 29.4
Light Head R-CNN Xception* 800/1200 95 31.5
Light Head R-CNN ShuffleNet v1 800/1200 76 29.9
Light Head R-CNN MobileNet v2 800/1200 94 30.0
Light Head R-CNN ShuffleNet v2 800/1200 109 31.8

Table 4.2 Comparisons of our light and fast detector results on COCO test-dev.
By combining ShuffleNet v2 [1] and Ligh-Head R-CNN [2], the light-weight detec-
tor achieves superior performance on both accuracy and speed.

4.2 Performance Study: Distributed Multitask Training

In this section, we aim at studying the effects of our proposed multitask training method.

We propose two methods of multitask training to enhance the performance of detection

framework:

1. Joint training of ImageNet classification and COCO detection.

(a) Task 1: Train ImageNet classification using ShuffleNet v2 model

(b) Task 2: Train COCO detection using ShuffleNet v2 + Light-Head R-CNN

2. Multiscale training of COCO detection.

(a) Task 1: Train COCO detection using ShuffleNet v2 + Light-Head R-CNN

(Input size: 800/1333)

(b) Task 2: Train COCO detection using ShuffleNet v2 + Light-Head R-CNN

(Input size: 600/1000)

For COCO detection training, we use train+val set in COCO except for 5000 images

from minival set, while using the minival set to benchmark. The benchmark metric is
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Method Training Setting mmAP
ShuffleNet v2 + Light-Head R-CNN On Single Machine 31.8
ShuffleNet v2 + Light-Head R-CNN Jointly Train with Classification 32.1
ShuffleNet v2 + Light-Head R-CNN Multiscale Training 32.8

Table 4.3 Results of distributed multitask learning on COCO test-dev. Our light-
weight detector achieves 0.3∼1 mmAP under our distributed multitask learning
framework.

COCO standard mmAP, i.e. the averaged mAPs at the box IoU thresholds from 0.5 to

0.95.

For ImageNet classification training, we follow the training setting in [3], except

that we set the learning rate of ImageNet classification always equal to that of COCO

detection. In addition, in order to avoid training unstability, we use warm-up training

for the first 1k iterations.

As shown in Table 4.3, distributed multitask learning can enhance the results at

most 1 mmAP on COCO detection, which is a notable improvement compared to con-

ventional multitask training methods.

4.3 Demo: COCO Object Detection
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Figure 4.1 Representative results of our light-weight detector (1)
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Figure 4.2 Representative results of our light-weight detector (2)
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Figure 4.3 Representative results of our light-weight detector (3)
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Chapter 5 Conclusion

In this thesis, we first combine ShuffleNet v2 [1](an inference-efficient backbone) and

Light-Head R-CNN [2](a fast and light-weight detection framework) to propose a light-

weight CNN architecture design for faster and better object detector. We also propose a

novel multitask learning framework, distributed multitask learning, to train this detec-

tion architecture, including joint training with classification and multiscale training.

Our ultimate ShuffleNet v2 [1] + Light-Head R-CNN [2] architecture, trained under

our distributed multitask learning framework, outperforms state-of-art object detectors

on COCO while keeping time efficiency. It achieves 32.8 mmAP at 109 FPS on COCO,

significantly outperforming the single-stage, fast detectors like YOLO and SSD on both

speed and accuracy.
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